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Abstract 
Software testing and metrics are two important 
approaches to assure the reliability and quality of 
sojhare. Testing and metrics of sequential programs 
have been a fairly sophisticated process, with various 
methodologies and tools available for use in building 
and demonstrating the correctness of a program being 
tested. The emergence of concurrent programming in 
the recent years, however, introduces new testing 
problems and diflculties that cannot be solved by 
testing techniques of traditional sequential programs. 
One of the diflcult tasks is that concurrent programs 
can have many instances of execution for the same set 
of input data. Many concurrent program testing 
methodologies are proposed to solve controlled 
execution and determinism. There are few discussions 
of concurrent somare testing ?om the inter-task 
viewpoints. Yet, the common characteristics of 
concurrent programming are explicit identijkation of 
the large grain parallel computation units (tasks), and 
the explicit inter-task communication via a 
rendezvous-style mechanism. In this paper, we focus 
the testing view on the concurrent programming 
through task decomposition. We propose four testing 
criteria to test a concurrent program. Programmer can 
choose an appropriate testing strategy depending on 
the properties of concurrent programs. Associated with 
the strategies, four equations are provided to measure 
the complexity of concurrent programs. 

Index Terms: Concurrent programs, software testing 
criterion, software complexity, Ada language, 
rendezvous. 

1. Introduction 

Software testing and metrics are very important 
techniques in software development life cycle. The 
purposes of software testing and metrics are the assurance 
of software quality and software correctness. Testing and 
metrics techniques of sequential programs are fairly 
mature and have various methodologies and tools 
available for use. In the past decade, the testing issues of 
concurrent programming are discussed more and more, 
generating many new problems that cannot be solved by 
traditional debugging techniques of sequential 
programming. In this paper, we will discuss the testing 
problems of concurrent programs and propose new testing 
strategies focused on an inter-tasks view. 

Concurrent programs are programs with components 
that can be executed in parallel. The ability to write 
concurrent programs has many advantages [ 5 ] .  However, 
the testing tasks of concurrent programs are difficult. Due 
to nondeterminism, concurrent programs can result in 
many instances of execution for the same set of input data. 
Although repeated execution of a nondeterministic 
concurrent grogram is possible, it is still not sufficient to 
investigate all such instances of execution. A worse case 
scenario is that a fault occurs in only one instance of 
execution, and that instance o f  execution is never tested. 
Thus, any realistic parallel program testing method must 
be able to investigate more than one instance of execution 
corresponding to an input data set for a possible fault. 

Testing of sequential programs has been established 
as a fairly sophisticated process, with various 
methodologies and tools available for use in buildmg and 
demonstrating confidence in the program being tested. 
The emergence of concurrent programming in recent 
years [ 7 ] [  131, however, has presented new testing 
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problems and difficulties which cannot be solved by 
regular sequential program testing techniques [ 1 11 [ 121. 
Many testing strategies are proposed based on different 
techniques and some shortcomings exist. We will describe 
the related research in the next section. However, there are 
few investigations to discuss concurrent software testing 
from an inter-task viewpoint. 

The common characteristics of concurrent 
programming are explicit identification of large grain 
parallel computation units (tasks), and explicit inter-task 
communication via a rendezvous-style mechanism. 
Existing concurrent programming languages supply these 
capacities, such as HAL/S [11], CSP [6] ,  Ada, and PCF 
FORTRAN [9], etc. Excluding the talent of inter-task 
communication, each parallel computation unit of a 
concurrent program has the same structure as sequential 
programs. To provide a specific basis for the further 
discussions, we choose Ada as our description sample, 
although the results are applicable to any programs that 
use rendezvous-like synchronization. Ada allows the 
specification and simultaneous execution of any number of 
tasks. The means for task synchronization and primary 
method of inter-task communication is a rendezvous. The 
rendezvous concept combines process synchronization and 
communication [ 11 [4]. Two processes interact by first 
synchronizing, then exchanging information, before 
continuing to perform their individual activities. This 
synchronization or communication to exchange 
information is called the rendezvous [5]. Thus we focus 
software testing in the rendezvous for concurrent 
programs. We will propose some testing strategies and 
metrics based on the rendezvous. To provide a focus, the 
Qscussion in the remainder of this paper will be with 
respect to Ada, and we assume that variables are not 
shared by different tasks in concurrent units. 

The remainder of this paper is organized as follows. 
Section 2 introduces a survey of concurrent programming 
testing. In section 3, we propose four testing criteria based 
on rendezvous view. Section 4 presents the coverage 
criterion hierarchy and related proof simultaneously. 
Considering the rendezvous, we further propose four 
equations to measure the complexity of concurrent 
programs. They are presented in section 5. Section 6 
concludes the paper and describes our plans for future 
work. 

2. The Background of Concurrent Program 
Testing 

The testing methodologies of concurrent programs 
are proposed more and more in recently years. The 
existing testing strategies of concurrent programs can be 
divided into four techniques [3]. 

The first one is static analysis. Taylor et al. propose a 
structural or white-box testing method [12]. This 
technique applies the traditional Structural testing 
strategies to concurrent programs. The authors focus the 
discussion on Ada programs. Each program unit 
(subprogram, task, package, or generic) defines a flow 
graph: each statement in the unit is represented by a node 
in the graph, and each transfer of control is represented by 
a directed edge. Weiss obtain another approach towards 
testing by considering a concurrent program as a set of 
sequential program [ 141. 

The second technique is testing based on 
deterministic execution. Tai, Carver and Obaid propose a 
deterministic execution technique to debug concurrent 
Ada programs [lo]. The proposed strategy is primarily to 
solve the following problem: when debugging an 
erroneous execution of P with input X, there is no 
guarantee that this execution will be repeated by executing 
P with input X. 

Another technique is testing based on execution 
traces. A mechanism for noninterference monitoring and 
reproduction of a program behavior of real-time software 
systems is proposed by Tsai et al. [13]. This mechanism 
uses the recorded execution history of a program to control 
the replay of the program behavior and guarantees the 
reproduction of its errors. The principal objective is to 
develop a "noninterference" software testing and 
debugging system to ensure minimum intervention with 
the execution of a target system, while providing users 
with a comprehensive testing and debuggmg environment. 

Yet another technique based on Petri nets is proposed 
by Morasca and Pezze [ 151. Its shortcoming is practically 
infeasible for large programs. 

The last technique is testing based on controlled 
execution. Damodaran-Kamal and Francioni have 
proposed a theory for testing nondeterminacy in message 
passing programs that is based on controlled execution 
with permuted delivery of messages [2]. In general, any 
nondeterminacy detection strategy is intrusive when it 
requires instrumentation of the code. In controlled 
execution, the delivery of messages sent to a process and 
sent by a process is regulated to control the execution of 
the process. Controlled execution permits experimentation 
with different race scenarios via permuting the order of 
delivery of messages at a receiver. 

3. A Rendezvous Oriented Testing for 
Concurrent Programs 

3.1 The Principles of Rendezvous in Ada 

The rendezvous in Ada programming language is 
implemented by enhy call and accept the entry call. Tasks 
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contain entries which are called by other tasks for 
synchronization and communication. Two tasks 
synchronize when the calling task makes an entry call and 
the called task accepts the entry call rendezvous. The 
synchronization rules in Ada are following: 

Two tasks A and B need to synchronize or exchange 
information. Task A ,  which calls an entry of task B, will 
wait if B is not ready to accept the entry call. This entry 
call will be queued. E A  does not want to wait, then A can 
use a facility that allows the entry call to be withdrawn if it 
cannot be accepted immedately. Alternatively, A can elect 
to wait a specified time period for B to accept the entry call 
before withdrawing the entry call. We will discuss this in a 
later section. When A is waiting as a result of making an 
entry call and B becomes ready, then a rendezvous occurs 
between A and B at the called entry. During the 
rendezvous, task A (the calling task) is suspended while B 
(the called task) continues execution, presumably to record 
the information sent to it by A or to return information to 
A.  They both resume execution in parallel at the end of the 
rendezvous. Tasks can communicate during a rendezvous. 
This communication may be bidirectional and take place 
using entry arguments and the corresponding parameters 
in the accept statement corresponding to the entry call. If 
several tasks call the same entry of a task, then the calling 
tasks will rendezvous with the called task in the order in 
which the calls are received by the called task, i.e., in 
FIFO order. For instance in [SI, there are two tasks, 
PRODUCER and CONSUMER. The PRODUCER will 
continue readmg input from keyboard and sending each 
character to CONSUMER. The CONSUMER will 
translate all lower-case characters to upper-case characters, 
and then prints the characters. This is shown in Example 
1 below. 
Example 1: 
The specifications of the two tasks are: 
task PRODUCER; 
task CONSUMER is 

end CONSUMER; 
enby RECEIVE(C: character); 

task body CONSUMER is 

begin 
X: character; 

loop 
accept RECEIYE(C: character) do 

-- names of calling tasks are not specijied 
X : = C; 

end RECEIVE; 
i fX  = ASCII. LF then NE W-LINE; 
else PUTflPPER pi)); 
end iJ 

end loop; 
end CONSUMER; 
In the body of CONSUMER, the statements from "accept 
RECEIVE" to "end RECEIVE" is called a block of accept 
statement. 

-- value of C stored in X 

3.2 Rendezvous Tes 

In this section, we will discuss the basic type of 
rendezvous in Ada and how to test it completely. 

Generally, a space-time diagram, shown in figure 3- 
1, is a convenient form to represent a parallel execution. 
In the space-time diagram, time flows from top to bottom, 
the vertical lines represent different processes, and the 
diagonal arrows represent message passings, here called 
rendezvous. However, it cannot represent multiple entry 
acceptance statements of rendezvous. 

In this paper, we will use a modified space-time 
diagram to show the types of rendezvous. We append a 
circle on the time flow to represent an entry call or entry 
acceptance statement and label the entry name on the 
diagonal arrow to describe the occurring entry. The circles 
are divided into two classes: entry call node and entry 
acceptance node, marked as EC and EA respectively. 

In Ada programming, the rendezvous is implemented 
by entry call and accept among tasks. In Ada 
programming, there are three basic rendezvous types: 
(a) Simple rendezvous: it is consisted of one EC node, 
one EA node and one edge connecting them, as shown in 
figure 3-2. 

The bodies of the two tasks are shown as follows: 
task body PRODUCER is 

C: character; TaSk3 
I 

Task1 
I 

begivr Entry 

Call while not END-OF-FILE(STANDARD-INPUT) loop 

CONSUMERXECEIVE (A SCII. LF); 
fEND-OF- LINE(STANDAR2-INPUT) then 

end iJ;. 
GET(C); CONSUMER.RECEIVE(C); 

end loop; 
CONSUMER.RECEIVE(ASCII. LF); 

end PRODUCER; 

Fig. 3- 1. An example of space-time diagram 
(b) Nested calling rendezvous: the block of an acceptance 
statement includes other entry call statements, shown in 
figure 3-3. We call the node of entry acceptance EAg to 
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mean including entry calling in the block of acceptance 
statement, and use a concentric circle instead of a single 
circle. 
(c) Nested called rendezvous: the block of an acceptance 
statement includes other entry acceptance statements. It is 
shown in figure 3-4. The concentric circle is marked EAd 
to mean including entry called in the block of acceptance 
statement. 

Taskl Task2 

Fig. 3-2. Space-time diagram of simple 

Taskl Task2 Task3 

EC 

EA 

Fig. 3-3. Space-time diagram of nested calling rendezvous 

Task1 Task3 

EC EC 

Fig. 3-4. Space-time diagram of nested called rendezvous 

Clearly, no matter what types of rendezvous, the 
entry calls still keep the ordering. Therefore, the testing is 
complete when we execute all entry calls (i.e. all EC nodes) 
at least once. We define a criterion, All-EC criterion, to 
represent the requirement for the rendezvous testing. 

Criterion 1. All-EC criterion: 
All-EC criterion is satisfied iff when all entry 
calls in an Ada program are tested at least 
once, i.e. each EC node of modified space- 
time graph must be traced at least once. 

One of the important characteristics of concurrent 
programs is nondeterminacy. Nondeterminacy happens 
when a concurrentlparallel program with the same input 
data yields different results on different runs. Any 
nondeterminacy in a concurrent/parallel program makes it 
difficult to detect the cause of program errors. 

Ada programs allow a called task with multiple 
acceptance statements for the same entry. For example 

reduced from [SI is the following: 
As shown in Example 2, there are two tasks: A ,  and B. 

Task A provides an entry E to accept the other tasks and 
process the coming entry call. There are two accept 
statements in task A for entry E, labeled <L1> and <L2>, 
respectively. The task B will call entry E, labeled <L3> for 
its entry call statement. 
Example 2: 
The tasks specifications are : 

task A is 

end; 
entry E(x : in out integer); 

task Ba 

The tasks bodies are : 
task body A is 

U, v : integer; 
begin 

... 
<L1> accept E(x : in out integer) do 

x := x + U; 
end accept: 
... 

<L2> accept E(x : in out integer) do 
x := x + v; 

end accept; 
end A;  

task body B is 
b : integer; 

<L3> A.E(b); 
PUT@); 

... 

... 
end B; 

The modified space-time diagram is shown in figure 
3-5. In this case, the All-EC criterion will be satisfied 
when entry call A.E( ) in task B is executed once, e.g., (L3 
vs. Ll). However, it is not enough for covering all possible 
synchronizations among tasks, likewise (L3 vs. L2) is lost. 
Thus, we propose the second criterion, All-Possible-EA 
criterion . 

Criterion 2. All-Possible-E4 criterion: 
All-Possible-EA criterion is satisfied iff each 
entry call must call all same entry acceptance 
statements at least once, i.e. each edge from 
an EC node to different E A  nodes of the 
modified space-time graph must be traced at 
least once. 
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Task1 Task2 Task1 Task2 

L1 
EA 

L1 
EA 

L2 E2 
EA EA 

L3 
EC 

L3 
EC 

Fig. 3-5. Two possible modified space-time diagram for 
Example 2. Note: The L1 and L2 are different 
entry accepts, but they accept same entry. 

Another testing problem of concurrent programs 
determining race. The races are one behavior of 
nondetermination. A race occurs at an entry acceptance 
that contain at least two calls in its received queue. For 
Example 3 ,  Task T is a monitor displayer that accepts a 
message and displays it. Task B and C are two sensor 
receivers that get states from hardware and send them to 
Task T. Their modified space-time diagram is shown in 
figure 3-6. The tasks can be abstractly described in 
Example 3 below. 

Example 3:  
The tasks specifications are : 

task T i s  

end; 
entry Display(m : in LINE); 

task B; 

tmk C; 

The tasks bodies are 1 

task body T is 
i:INTEGER 

begin 
... 

accept Display(m : in LINE) do 
i := 1; 
loop 
display character m(i); 
exit when m(i) == LF; 
1 := i + I :  

end loop 
end accept; 

... 
end T; 

task body B is 
L : LINE(I..254); 

T. Display@); 
... 

end B; 

task body C is 
X :  L.INE(I..254); 
~.~ 
T. Display&); 
... 

end C: 

TaskB TaskT TaskC TaskB TaskT TaskC 

Fig. 3-6. Two possible moMied space-time diagram for 
Example 3 

If we need to consider the ordering relationship, the 
race of messages displaying from Task B and Task C will 
occur. For testing races, we propose the third criterion, 
All-EC-Permute criterion. 

Criterion 3. All-EC-Permutation criterion: 
All-EC-Permutation criterion is satisfied 8 

all possible permutations in received queue 
of each entry acceptance are tested at least 
once, i.e., the permutation of all edges from 
different EC nodes to an EA node of 
modified space-time graph must be traced at 
least once. 

Thus the testing cases include not only ((EC1, EA) 
and (EC2, EA)} but also ((EC2, EA) and @Cl, EA)}, i.e., 
the number test cases of an entry acceptance is the 
permutation of all possible entry calls. 

Many tasks may have sent the same entry calls to a 
received task that has multiple entry acceptance 
statements for the same entry name If the executed 
ordering among the entry calls and the happened 
acceptance statements are dependent, then the All-EC- 
Permutation criterion is not enough because it Just tests 
the permutation of individual entry acceptance. It cannot 
test the permuted relationship between different entry 
acceptance statements. Thus, we propose the fourth 
criterion to test the potential ordering-dependent 
permutation of all entry calls in all entry acceptance 
statements wlth the same entry name. 

In Example 4, extended from Example 2, there is 
another Task C which also calls entry E, labeled <L4> for 
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its entry call statement. Figure 3-7 depicts their possible 
modified space-time diagrams. 

Example 4: 
The tasks specifications are : 
taskA is 

entry E(x : in out integer); 
end: 

task B; 

task C; 

The tasks bodies are : 
task body A is 

U, v : integer; 
begin 

".. 
<LI )> accept E(x : in out integer) do 

x : = x  + U: 
end accept ; 

" . I  

<L2> accept E(x : in out integer) do 

end accept; 
x : = x +  v; 

end A; 

task body B is 

begin 
b : integer; 

. . ~  
<L3> A.E(b); 

PUT(b)d 

end B; 

task body C is 
c : integer; 

begin 

<L4> A.E(c); 
. ~ .  

PUT@); 
.. r 

end C; 

The fourth criterion is described as the following : 

Criterion 4. All-EC-Dependency-Permutation criterion 

EA node with the same entry name of 
modified space-time graph must be traced 
at least once. 

The test cases are ((L3, Ll), (L4, L1) and (L4, Ll), 
(L3, L1) and (L3, L2), (L4, L2) and (L4, L2), (L3, L2) and 
(L3, Ll), (L4, L2) and (L4, Ll), ($3, L2)}, i.e., the 
number of test cases is the summary of the permutations of 
all possible entry call of individual entry acceptance plus 
the permutations of all possible entry calls in different 
entry acceptance statements. 

TaslkB TaskA TaskC TaskB TasM TaskC 

TaskB TaskA TaskC TaskB TaskA TaskC 

L4 
L4 L3 

L3 

Fig. 3-7. Possible modified space-time diagram for Example 4 

4. Coverage Criteria Hierarchy 

In this section, we will present the coverage criteria 
hierarchy of the proposed criteria in section 3.2 and j u s t e  

A1l-EC-DependencY-Permutation criterion the coverage relationship among them. First, some 
is satisfied iff possible permutations in 
received queue of all entry acceptance 
statements with the Same name are 
tested at least once, i.e. the permutation of 
all edges from Merent EC nodes to each 

definitions of terms used in the following theorems are 
presented, 
M: The notation A4 means the total number of different 
entries in an Ada program, 
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mE: The notation mE means the number of entry calls that 
call the same entry E from the same or different tasks in 
an Ada program. 
nE: The notation nE means the number of entry acceptance 
that accept the same entry E in an Ada program. 
S or St: The notation S (or S’) means the set of tested 
rendezvous satisfllng some criterion, 
N or NI: The notation N (or N’) means the total number of 
elements of S (or 5’’). 
Strictly subsume: Criterion A strictly subsumes criterion 
B if the set of tested rendezvous that satisfies criterion A 
also satisfies criterion B, and the set of tested rendezvous 
that satisfies criterion B does not satisfy criterion A. 

Theorem 1 

subsumes All-EC-Permutation criterion. 
proof 

For each entry E in an Ada program, let S be the set 
of All-EC-Dependency-Permutation criterion and S’ be the 
set of All-EC-Permutation criterion. 

Each acceptance statement of the entry E possibly has 
mE synchronizations. The number of permutations of all 
possible rendezvous at an acceptance statement is P(mE), 
i.e., mE!, where mE! = mE * (mE-l) *...* 2*1. The number 
of acceptance statements of the entry E in an Ada program 
is nE, and the summation of permutation of individual 
entry acceptance with the same entry name is (nE * mE)!. 
Furthermore, considering the ordering dependency of all 
entry calls in all entry acceptance statements with the 
same entry name, we get mE acceptance nodes from nE for 
permuting mE entry calls. Thus there are C(nE , mE)* md, 
where C(nE, mE) = nE!/((nE-mE)! (mE!)), permutations from 
nE to choose mE. The total number of S is the permutations 
of all entry calls in each indwidual entry acceptance plus 
the dependent permutations of all entry calls in all entry 
acceptance statements, i.e., N = nE * me ! + C(ne , mE) * 
me!. 

To satisfy All-EC-Permutation criterion, each 
acceptance statement of the entry E possibly has me 
synchronizations. The permutations of all possible 
rendezvous at an acceptance statement is P(mE), i.e., mE!. 
The number of acceptance statements of the entry E in an 
Ada program is nE, therefore the totd number of S’ is nE * 
mE!, i.e., N ’= nE * mE! . 

Due to S and S’ are the set of tested rendezvous for 
the same entry, it is clear that S’ is included in S. 
Therefore, All-EC-Dependency-Permutation criterion 
strictly subsumes All-EC-Permutation criterion. 

E 

All-EC-Dependency-Permutation criterion strictly 

Theorem 2 

Possible-EA criterion. 
All-EC-Permutation criterion strictly subsumes All- 

proof 
For each entry E in an Ada program, let S be the set 

of All-EC-Permutation criterion and S’ be the set of All- 
Possible-EA criterion. 

According to Theorem 1, the total number of S is nE * 
me!, i.e., N = nE * mE!. To satisfj All-Possible-EA 
criterion, each entry call statement of the entry E must 
execute nB times because there are ne acceptance 
statements of the entry E. Since there are mE entry call 
statements of the entry E, the total number of S’ is mE * ne, 
i.e., N‘ = * nE. 

Due to S and S’ are the set of tested rendezvous for 
the same entry, it is clear that S’ is included in S. 
Therefore, All-EC-Permutation criterion strictly subsumes 
All-Possible-EA criterion, 

Theorem 3 

criterion. 
proof 

For each entry E in an Ada grogram, let S be the set 
of All-Possible-EA criterion and S’ be the set of All-EC 
criterion, 

According to Theorem 2, the total number of S is mE 
* nE, i.e., N = mE * nE. To satisfy All-EC criterion, each 
entry call statement of the entry E must execute at least 
once, the total number of S’ is mE, i.e., N’ = mE. 

Due to S and S’ are the set of tested rendezvous for 
the same entry, it is clear that S’ is included in S. 
Therefore, All-Possible-EA criterion strictly subsumes 
All-EC criterion. 

All-Possible-EA criterion strictly subsumes All-EC 

The coverage criteria hierarchy is shown in figure 4-1. 

All-EC-Dependency-Permutation 
J 

All-EC-Permutati on 
4 

All-Possible-EA 
+ 

All-EC 

Fig. 4- 1. Rendezvous-based testing coverage criteria 
hierarchy 

5. Software Metrics for Concurrent Programs 
Based on Rendezvous 

Finally, we propose a new view to measure the 
complexity of a concurrent program. As mentioned above, 
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synchronization and communication are the major 
Merences between concurrent programs and sequential 
programs. The complexity measurement of a concurrent 
program is also emphasized in the rendezvous. The 
number of rendezvous is naturally an important factor for 
the complexity of the concurrent program. Therefore, the 
number of different entry, M, where each entry has mE 
entry call statements and nE entry acceptance statements, 
can be used to compare the complexity among concurrent 
programs. The first equation for measuring a concurrent 
program is the following: 
Equation I 
Cpx = EMi=, mE, where Cpx means the complexity of a 
concurrent program. M and mE are defined in the previous 
section, and the index i (from 1 to M) represents each 
individual entry. 

The equation counts all entry calls instruction. This 
is the most simple case in which all entry call statements 
and entry acceptance statements are one-to-one mapping. 
If Merent entry acceptance statements received the same 
entry, like Example 2, we need to consider the possible 
rendezvous combination. Therefore, the second equation 
is presented as follows: 
Equation 2 
Cpx = Z i=l( mEi * nEi) , where Cpx means the 
complexity of a concurrent program, and nE is defined in 
the above section. 

However, the major characteristic of a concurrent 
program is race. The races make nondeterminism in 
concurrent programs and increase the dificuly in the 
testing task. According to the proof of Theorem 1, we can 
calculate the permutations of all rendezvous in an Ada 
program and the permutations of all rendezvous include 
all race cases. Thus, we propose the third equation to 
measure the complexity of an Ada program. 
Equation 3 
Cpx = Z JnEi * m,, !), where i means each individual 
entry, from 1 to M. 

When we consider the ordering dependency among 
entry calls, the third equation must be extended to the 
fourth equation as the following 
Equation 4 
Cpx = z 
where i means each individual entry, from 1 to M, and C(x, 
y) means combination, from x choosing y. 

According to these metrics equations, we make two 
suggestions as the following: 
(1) Don't centralize all entry acceptance statements in few 
tasks. It means the load of called tasks are heavy. Many 
tasks will send entry calls to the same entry acceptance of 
a called task. When we increase an entry call, the 
rendezvous complexity will increase tremendously. 
(2) Don't distribute acceptance statements to accept the 

M 

M 

M 
* mEi 9 + C(nm mEi) * mEi!), 

same entry: It means there are many possibilities when a 
task sen& an entry call. When we increase an entry 
acceptance statement to receive the same entry, the 
rendezvous will also increase tremendously. 

When a concurrent program has the above two 
properties, it would be advised for redesign to decrease 
complexity. 

6. Conclusion and Future work 

Recently, concurrent/parallel programming testing is 
emphasized increasingly. Testing concurrent/parallel 
programs is considerably more dBcult because 
concurrent programs are often not deterministic. Thus, 
many concurrent programming testing strategies are 
proposed according to different properties of concurrent 
programs. 

One major characteristic of concurrent programs 
compared with sequential program is rendezvous. We 
propose a rendezvous point of view for concurrent 
program testing. In our research, we present four testing 
criteria based on the rendezvous for concurrent/parallel 
programs. According to the analytic properly of entry call 
and entry acceptance in the tasks, programmers can 
choose an appropriate testing strategy to debug their 
concurrent programs. We also propose a coverage criteria 
hierarchy for the four criteria and prove the correctness of 
the coverage hierarchy. At the same time, we provide four 
equations based on the rendezvous to measure software 
complexity of a concurrentlparallel program. Furthermore, 
we make two suggestions for concurrent programming 
based on rendezvous complexity. 

In future related work, we will consider the 
conjunction of rendezvous with other Ada instructions, 
such as select, delay, selective-wait, etc., and propose 
more testing criteria to help software engmeers for testing 
tasks. We will also extend the investigation to general 
parallel programming language with explicit lexically- 
specified parallel constructs. We will then apply the 
technologies of program decomposition to conduct a 
quantitative analysis of the testing criteria and software 
metncs for concurrentlpardlel programs. Finally, we will 
apply the methodology to other similar programming 
environments, e.g., event-driven programming, network 
programming and object-oriented Programming. 
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