
Task Decomposition Testing and Metrics
for Concurre

Chi-Mhg Chug, Timothy K. Shih, Yhg-Hong Wmg,
Wei-Chuan Lin, and Ying-Feng Kou

Graduate Institute of Information Engineering, TamKang University
T a m 4 Taipei Hsien, Taiwan, R0.C.

Abstract
Software testing and metrics are two important
approaches to assure the reliability and quality of
sojhare. Testing and metrics of sequential programs
have been a fairly sophisticated process, with various
methodologies and tools available for use in building
and demonstrating the correctness of a program being
tested. The emergence of concurrent programming in
the recent years, however, introduces new testing
problems and diflculties that cannot be solved by
testing techniques of traditional sequential programs.
One of the diflcult tasks is that concurrent programs
can have many instances of execution for the same set
of input data. Many concurrent program testing
methodologies are proposed to solve controlled
execution and determinism. There are few discussions
of concurrent somare testing ?om the inter-task
viewpoints. Yet, the common characteristics of
concurrent programming are explicit identijkation of
the large grain parallel computation units (tasks), and
the explicit inter-task communication via a
rendezvous-style mechanism. In this paper, we focus
the testing view on the concurrent programming
through task decomposition. We propose four testing
criteria to test a concurrent program. Programmer can
choose an appropriate testing strategy depending on
the properties of concurrent programs. Associated with
the strategies, four equations are provided to measure
the complexity of concurrent programs.

Index Terms: Concurrent programs, software testing
criterion, software complexity, Ada language,
rendezvous.

1. Introduction

Software testing and metrics are very important
techniques in software development life cycle. The
purposes of software testing and metrics are the assurance
of software quality and software correctness. Testing and
metrics techniques of sequential programs are fairly
mature and have various methodologies and tools
available for use. In the past decade, the testing issues of
concurrent programming are discussed more and more,
generating many new problems that cannot be solved by
traditional debugging techniques of sequential
programming. In this paper, we will discuss the testing
problems of concurrent programs and propose new testing
strategies focused on an inter-tasks view.

Concurrent programs are programs with components
that can be executed in parallel. The ability to write
concurrent programs has many advantages [5] . However,
the testing tasks of concurrent programs are difficult. Due
to nondeterminism, concurrent programs can result in
many instances of execution for the same set of input data.
Although repeated execution of a nondeterministic
concurrent grogram is possible, it is still not sufficient to
investigate all such instances of execution. A worse case
scenario is that a fault occurs in only one instance of
execution, and that instance o f execution is never tested.
Thus, any realistic parallel program testing method must
be able to investigate more than one instance of execution
corresponding to an input data set for a possible fault.

Testing of sequential programs has been established
as a fairly sophisticated process, with various
methodologies and tools available for use in buildmg and
demonstrating confidence in the program being tested.
The emergence of concurrent programming in recent
years [7] [131, however, has presented new testing

0-8186-7707-4/96 $5.00 0 1996 IEEE
122

problems and difficulties which cannot be solved by
regular sequential program testing techniques [1 11 [121.
Many testing strategies are proposed based on different
techniques and some shortcomings exist. We will describe
the related research in the next section. However, there are
few investigations to discuss concurrent software testing
from an inter-task viewpoint.

The common characteristics of concurrent
programming are explicit identification of large grain
parallel computation units (tasks), and explicit inter-task
communication via a rendezvous-style mechanism.
Existing concurrent programming languages supply these
capacities, such as HAL/S [11], CSP [6] , Ada, and PCF
FORTRAN [9], etc. Excluding the talent of inter-task
communication, each parallel computation unit of a
concurrent program has the same structure as sequential
programs. To provide a specific basis for the further
discussions, we choose Ada as our description sample,
although the results are applicable to any programs that
use rendezvous-like synchronization. Ada allows the
specification and simultaneous execution of any number of
tasks. The means for task synchronization and primary
method of inter-task communication is a rendezvous. The
rendezvous concept combines process synchronization and
communication [11 [4]. Two processes interact by first
synchronizing, then exchanging information, before
continuing to perform their individual activities. This
synchronization or communication to exchange
information is called the rendezvous [5]. Thus we focus
software testing in the rendezvous for concurrent
programs. We will propose some testing strategies and
metrics based on the rendezvous. To provide a focus, the
Qscussion in the remainder of this paper will be with
respect to Ada, and we assume that variables are not
shared by different tasks in concurrent units.

The remainder of this paper is organized as follows.
Section 2 introduces a survey of concurrent programming
testing. In section 3, we propose four testing criteria based
on rendezvous view. Section 4 presents the coverage
criterion hierarchy and related proof simultaneously.
Considering the rendezvous, we further propose four
equations to measure the complexity of concurrent
programs. They are presented in section 5. Section 6
concludes the paper and describes our plans for future
work.

2. The Background of Concurrent Program
Testing

The testing methodologies of concurrent programs
are proposed more and more in recently years. The
existing testing strategies of concurrent programs can be
divided into four techniques [3].

The first one is static analysis. Taylor et al. propose a
structural or white-box testing method [12]. This
technique applies the traditional Structural testing
strategies to concurrent programs. The authors focus the
discussion on Ada programs. Each program unit
(subprogram, task, package, or generic) defines a flow
graph: each statement in the unit is represented by a node
in the graph, and each transfer of control is represented by
a directed edge. Weiss obtain another approach towards
testing by considering a concurrent program as a set of
sequential program [141.

The second technique is testing based on
deterministic execution. Tai, Carver and Obaid propose a
deterministic execution technique to debug concurrent
Ada programs [lo]. The proposed strategy is primarily to
solve the following problem: when debugging an
erroneous execution of P with input X, there is no
guarantee that this execution will be repeated by executing
P with input X.

Another technique is testing based on execution
traces. A mechanism for noninterference monitoring and
reproduction of a program behavior of real-time software
systems is proposed by Tsai et al. [13]. This mechanism
uses the recorded execution history of a program to control
the replay of the program behavior and guarantees the
reproduction of its errors. The principal objective is to
develop a "noninterference" software testing and
debugging system to ensure minimum intervention with
the execution of a target system, while providing users
with a comprehensive testing and debuggmg environment.

Yet another technique based on Petri nets is proposed
by Morasca and Pezze [151. Its shortcoming is practically
infeasible for large programs.

The last technique is testing based on controlled
execution. Damodaran-Kamal and Francioni have
proposed a theory for testing nondeterminacy in message
passing programs that is based on controlled execution
with permuted delivery of messages [2]. In general, any
nondeterminacy detection strategy is intrusive when it
requires instrumentation of the code. In controlled
execution, the delivery of messages sent to a process and
sent by a process is regulated to control the execution of
the process. Controlled execution permits experimentation
with different race scenarios via permuting the order of
delivery of messages at a receiver.

3. A Rendezvous Oriented Testing for
Concurrent Programs

3.1 The Principles of Rendezvous in Ada

The rendezvous in Ada programming language is
implemented by enhy call and accept the entry call. Tasks

123

contain entries which are called by other tasks for
synchronization and communication. Two tasks
synchronize when the calling task makes an entry call and
the called task accepts the entry call rendezvous. The
synchronization rules in Ada are following:

Two tasks A and B need to synchronize or exchange
information. Task A , which calls an entry of task B, will
wait if B is not ready to accept the entry call. This entry
call will be queued. E A does not want to wait, then A can
use a facility that allows the entry call to be withdrawn if it
cannot be accepted immedately. Alternatively, A can elect
to wait a specified time period for B to accept the entry call
before withdrawing the entry call. We will discuss this in a
later section. When A is waiting as a result of making an
entry call and B becomes ready, then a rendezvous occurs
between A and B at the called entry. During the
rendezvous, task A (the calling task) is suspended while B
(the called task) continues execution, presumably to record
the information sent to it by A or to return information to
A. They both resume execution in parallel at the end of the
rendezvous. Tasks can communicate during a rendezvous.
This communication may be bidirectional and take place
using entry arguments and the corresponding parameters
in the accept statement corresponding to the entry call. If
several tasks call the same entry of a task, then the calling
tasks will rendezvous with the called task in the order in
which the calls are received by the called task, i.e., in
FIFO order. For instance in [SI, there are two tasks,
PRODUCER and CONSUMER. The PRODUCER will
continue readmg input from keyboard and sending each
character to CONSUMER. The CONSUMER will
translate all lower-case characters to upper-case characters,
and then prints the characters. This is shown in Example
1 below.
Example 1:
The specifications of the two tasks are:
task PRODUCER;
task CONSUMER is

end CONSUMER;
enby RECEIVE(C: character);

task body CONSUMER is

begin
X: character;

loop
accept RECEIYE(C: character) do

-- names of calling tasks are not specijied
X : = C;

end RECEIVE;
i fX = ASCII. LF then NE W-LINE;
else PUTflPPER pi));
end iJ

end loop;
end CONSUMER;
In the body of CONSUMER, the statements from "accept
RECEIVE" to "end RECEIVE" is called a block of accept
statement.

-- value of C stored in X

3.2 Rendezvous Tes

In this section, we will discuss the basic type of
rendezvous in Ada and how to test it completely.

Generally, a space-time diagram, shown in figure 3-
1, is a convenient form to represent a parallel execution.
In the space-time diagram, time flows from top to bottom,
the vertical lines represent different processes, and the
diagonal arrows represent message passings, here called
rendezvous. However, it cannot represent multiple entry
acceptance statements of rendezvous.

In this paper, we will use a modified space-time
diagram to show the types of rendezvous. We append a
circle on the time flow to represent an entry call or entry
acceptance statement and label the entry name on the
diagonal arrow to describe the occurring entry. The circles
are divided into two classes: entry call node and entry
acceptance node, marked as EC and EA respectively.

In Ada programming, the rendezvous is implemented
by entry call and accept among tasks. In Ada
programming, there are three basic rendezvous types:
(a) Simple rendezvous: it is consisted of one EC node,
one EA node and one edge connecting them, as shown in
figure 3-2.

The bodies of the two tasks are shown as follows:
task body PRODUCER is

C: character; TaSk3
I

Task1
I

begivr Entry

Call while not END-OF-FILE(STANDARD-INPUT) loop

CONSUMERXECEIVE (A SCII. LF);
fEND-OF- LINE(STANDAR2-INPUT) then

end iJ;.
GET(C); CONSUMER.RECEIVE(C);

end loop;
CONSUMER.RECEIVE(ASCII. LF);

end PRODUCER;

Fig. 3- 1. An example of space-time diagram
(b) Nested calling rendezvous: the block of an acceptance
statement includes other entry call statements, shown in
figure 3-3. We call the node of entry acceptance EAg to

124

mean including entry calling in the block of acceptance
statement, and use a concentric circle instead of a single
circle.
(c) Nested called rendezvous: the block of an acceptance
statement includes other entry acceptance statements. It is
shown in figure 3-4. The concentric circle is marked EAd
to mean including entry called in the block of acceptance
statement.

Taskl Task2

Fig. 3-2. Space-time diagram of simple

Taskl Task2 Task3

EC

EA

Fig. 3-3. Space-time diagram of nested calling rendezvous

Task1 Task3

EC EC

Fig. 3-4. Space-time diagram of nested called rendezvous

Clearly, no matter what types of rendezvous, the
entry calls still keep the ordering. Therefore, the testing is
complete when we execute all entry calls (i.e. all EC nodes)
at least once. We define a criterion, All-EC criterion, to
represent the requirement for the rendezvous testing.

Criterion 1. All-EC criterion:
All-EC criterion is satisfied iff when all entry
calls in an Ada program are tested at least
once, i.e. each EC node of modified space-
time graph must be traced at least once.

One of the important characteristics of concurrent
programs is nondeterminacy. Nondeterminacy happens
when a concurrentlparallel program with the same input
data yields different results on different runs. Any
nondeterminacy in a concurrent/parallel program makes it
difficult to detect the cause of program errors.

Ada programs allow a called task with multiple
acceptance statements for the same entry. For example

reduced from [SI is the following:
As shown in Example 2, there are two tasks: A , and B.

Task A provides an entry E to accept the other tasks and
process the coming entry call. There are two accept
statements in task A for entry E, labeled <L1> and <L2>,
respectively. The task B will call entry E, labeled <L3> for
its entry call statement.
Example 2:
The tasks specifications are :

task A is

end;
entry E(x : in out integer);

task Ba

The tasks bodies are :
task body A is

U, v : integer;
begin

...
<L1> accept E(x : in out integer) do

x := x + U;
end accept:
...

<L2> accept E(x : in out integer) do
x := x + v;

end accept;
end A;

task body B is
b : integer;

<L3> A.E(b);
PUT@);

...

...
end B;

The modified space-time diagram is shown in figure
3-5. In this case, the All-EC criterion will be satisfied
when entry call A.E() in task B is executed once, e.g., (L3
vs. Ll). However, it is not enough for covering all possible
synchronizations among tasks, likewise (L3 vs. L2) is lost.
Thus, we propose the second criterion, All-Possible-EA
criterion .

Criterion 2. All-Possible-E4 criterion:
All-Possible-EA criterion is satisfied iff each
entry call must call all same entry acceptance
statements at least once, i.e. each edge from
an EC node to different E A nodes of the
modified space-time graph must be traced at
least once.

125

Task1 Task2 Task1 Task2

L1
EA

L1
EA

L2 E2
EA EA

L3
EC

L3
EC

Fig. 3-5. Two possible modified space-time diagram for
Example 2. Note: The L1 and L2 are different
entry accepts, but they accept same entry.

Another testing problem of concurrent programs
determining race. The races are one behavior of
nondetermination. A race occurs at an entry acceptance
that contain at least two calls in its received queue. For
Example 3 , Task T is a monitor displayer that accepts a
message and displays it. Task B and C are two sensor
receivers that get states from hardware and send them to
Task T. Their modified space-time diagram is shown in
figure 3-6. The tasks can be abstractly described in
Example 3 below.

Example 3:
The tasks specifications are :

task T i s

end;
entry Display(m : in LINE);

task B;

tmk C;

The tasks bodies are 1

task body T is
i:INTEGER

begin
...

accept Display(m : in LINE) do
i := 1;
loop
display character m(i);
exit when m(i) == LF;
1 := i + I :

end loop
end accept;

...
end T;

task body B is
L : LINE(I..254);

T. Display@);
...

end B;

task body C is
X : L.INE(I..254);
~.~
T. Display&);
...

end C:

TaskB TaskT TaskC TaskB TaskT TaskC

Fig. 3-6. Two possible moMied space-time diagram for
Example 3

If we need to consider the ordering relationship, the
race of messages displaying from Task B and Task C will
occur. For testing races, we propose the third criterion,
All-EC-Permute criterion.

Criterion 3. All-EC-Permutation criterion:
All-EC-Permutation criterion is satisfied 8

all possible permutations in received queue
of each entry acceptance are tested at least
once, i.e., the permutation of all edges from
different EC nodes to an EA node of
modified space-time graph must be traced at
least once.

Thus the testing cases include not only ((EC1, EA)
and (EC2, EA)} but also ((EC2, EA) and @Cl, EA)}, i.e.,
the number test cases of an entry acceptance is the
permutation of all possible entry calls.

Many tasks may have sent the same entry calls to a
received task that has multiple entry acceptance
statements for the same entry name If the executed
ordering among the entry calls and the happened
acceptance statements are dependent, then the All-EC-
Permutation criterion is not enough because it Just tests
the permutation of individual entry acceptance. It cannot
test the permuted relationship between different entry
acceptance statements. Thus, we propose the fourth
criterion to test the potential ordering-dependent
permutation of all entry calls in all entry acceptance
statements wlth the same entry name.

In Example 4, extended from Example 2, there is
another Task C which also calls entry E, labeled <L4> for

126

its entry call statement. Figure 3-7 depicts their possible
modified space-time diagrams.

Example 4:
The tasks specifications are :
taskA is

entry E(x : in out integer);
end:

task B;

task C;

The tasks bodies are :
task body A is

U, v : integer;
begin

"..
<LI)> accept E(x : in out integer) do

x : = x + U:
end accept ;

" . I

<L2> accept E(x : in out integer) do

end accept;
x : = x + v;

end A;

task body B is

begin
b : integer;

. . ~
<L3> A.E(b);

PUT(b)d

end B;

task body C is
c : integer;

begin

<L4> A.E(c);
. ~ .

PUT@);
.. r

end C;

The fourth criterion is described as the following :

Criterion 4. All-EC-Dependency-Permutation criterion

EA node with the same entry name of
modified space-time graph must be traced
at least once.

The test cases are ((L3, Ll), (L4, L1) and (L4, Ll),
(L3, L1) and (L3, L2), (L4, L2) and (L4, L2), (L3, L2) and
(L3, Ll), (L4, L2) and (L4, Ll), ($3, L2)}, i.e., the
number of test cases is the summary of the permutations of
all possible entry call of individual entry acceptance plus
the permutations of all possible entry calls in different
entry acceptance statements.

TaslkB TaskA TaskC TaskB TasM TaskC

TaskB TaskA TaskC TaskB TaskA TaskC

L4
L4 L3

L3

Fig. 3-7. Possible modified space-time diagram for Example 4

4. Coverage Criteria Hierarchy

In this section, we will present the coverage criteria
hierarchy of the proposed criteria in section 3.2 and j u s t e

A1l-EC-DependencY-Permutation criterion the coverage relationship among them. First, some
is satisfied iff possible permutations in
received queue of all entry acceptance
statements with the Same name are
tested at least once, i.e. the permutation of
all edges from Merent EC nodes to each

definitions of terms used in the following theorems are
presented,
M: The notation A4 means the total number of different
entries in an Ada program,

127

mE: The notation mE means the number of entry calls that
call the same entry E from the same or different tasks in
an Ada program.
nE: The notation nE means the number of entry acceptance
that accept the same entry E in an Ada program.
S or St: The notation S (or S’) means the set of tested
rendezvous satisfllng some criterion,
N or NI: The notation N (or N’) means the total number of
elements of S (or 5’’).
Strictly subsume: Criterion A strictly subsumes criterion
B if the set of tested rendezvous that satisfies criterion A
also satisfies criterion B, and the set of tested rendezvous
that satisfies criterion B does not satisfy criterion A.

Theorem 1

subsumes All-EC-Permutation criterion.
proof

For each entry E in an Ada program, let S be the set
of All-EC-Dependency-Permutation criterion and S’ be the
set of All-EC-Permutation criterion.

Each acceptance statement of the entry E possibly has
mE synchronizations. The number of permutations of all
possible rendezvous at an acceptance statement is P(mE),
i.e., mE!, where mE! = mE * (mE-l) *...* 2*1. The number
of acceptance statements of the entry E in an Ada program
is nE, and the summation of permutation of individual
entry acceptance with the same entry name is (nE * mE)!.
Furthermore, considering the ordering dependency of all
entry calls in all entry acceptance statements with the
same entry name, we get mE acceptance nodes from nE for
permuting mE entry calls. Thus there are C(nE , mE)* md,
where C(nE, mE) = nE!/((nE-mE)! (mE!)), permutations from
nE to choose mE. The total number of S is the permutations
of all entry calls in each indwidual entry acceptance plus
the dependent permutations of all entry calls in all entry
acceptance statements, i.e., N = nE * me ! + C(ne , mE) *
me!.

To satisfy All-EC-Permutation criterion, each
acceptance statement of the entry E possibly has me
synchronizations. The permutations of all possible
rendezvous at an acceptance statement is P(mE), i.e., mE!.
The number of acceptance statements of the entry E in an
Ada program is nE, therefore the totd number of S’ is nE *
mE!, i.e., N ’= nE * mE! .

Due to S and S’ are the set of tested rendezvous for
the same entry, it is clear that S’ is included in S.
Therefore, All-EC-Dependency-Permutation criterion
strictly subsumes All-EC-Permutation criterion.

E

All-EC-Dependency-Permutation criterion strictly

Theorem 2

Possible-EA criterion.
All-EC-Permutation criterion strictly subsumes All-

proof
For each entry E in an Ada program, let S be the set

of All-EC-Permutation criterion and S’ be the set of All-
Possible-EA criterion.

According to Theorem 1, the total number of S is nE *
me!, i.e., N = nE * mE!. To satisfj All-Possible-EA
criterion, each entry call statement of the entry E must
execute nB times because there are ne acceptance
statements of the entry E. Since there are mE entry call
statements of the entry E, the total number of S’ is mE * ne,
i.e., N‘ = * nE.

Due to S and S’ are the set of tested rendezvous for
the same entry, it is clear that S’ is included in S.
Therefore, All-EC-Permutation criterion strictly subsumes
All-Possible-EA criterion,

Theorem 3

criterion.
proof

For each entry E in an Ada grogram, let S be the set
of All-Possible-EA criterion and S’ be the set of All-EC
criterion,

According to Theorem 2, the total number of S is mE
* nE, i.e., N = mE * nE. To satisfy All-EC criterion, each
entry call statement of the entry E must execute at least
once, the total number of S’ is mE, i.e., N’ = mE.

Due to S and S’ are the set of tested rendezvous for
the same entry, it is clear that S’ is included in S.
Therefore, All-Possible-EA criterion strictly subsumes
All-EC criterion.

All-Possible-EA criterion strictly subsumes All-EC

The coverage criteria hierarchy is shown in figure 4-1.

All-EC-Dependency-Permutation
J

All-EC-Permutati on
4

All-Possible-EA
+

All-EC

Fig. 4- 1. Rendezvous-based testing coverage criteria
hierarchy

5. Software Metrics for Concurrent Programs
Based on Rendezvous

Finally, we propose a new view to measure the
complexity of a concurrent program. As mentioned above,

128

synchronization and communication are the major
Merences between concurrent programs and sequential
programs. The complexity measurement of a concurrent
program is also emphasized in the rendezvous. The
number of rendezvous is naturally an important factor for
the complexity of the concurrent program. Therefore, the
number of different entry, M, where each entry has mE
entry call statements and nE entry acceptance statements,
can be used to compare the complexity among concurrent
programs. The first equation for measuring a concurrent
program is the following:
Equation I
Cpx = EMi=, mE, where Cpx means the complexity of a
concurrent program. M and mE are defined in the previous
section, and the index i (from 1 to M) represents each
individual entry.

The equation counts all entry calls instruction. This
is the most simple case in which all entry call statements
and entry acceptance statements are one-to-one mapping.
If Merent entry acceptance statements received the same
entry, like Example 2, we need to consider the possible
rendezvous combination. Therefore, the second equation
is presented as follows:
Equation 2
Cpx = Z i=l(mEi * nEi) , where Cpx means the
complexity of a concurrent program, and nE is defined in
the above section.

However, the major characteristic of a concurrent
program is race. The races make nondeterminism in
concurrent programs and increase the dificuly in the
testing task. According to the proof of Theorem 1, we can
calculate the permutations of all rendezvous in an Ada
program and the permutations of all rendezvous include
all race cases. Thus, we propose the third equation to
measure the complexity of an Ada program.
Equation 3
Cpx = Z JnEi * m,, !), where i means each individual
entry, from 1 to M.

When we consider the ordering dependency among
entry calls, the third equation must be extended to the
fourth equation as the following
Equation 4
Cpx = z
where i means each individual entry, from 1 to M, and C(x,
y) means combination, from x choosing y.

According to these metrics equations, we make two
suggestions as the following:
(1) Don't centralize all entry acceptance statements in few
tasks. It means the load of called tasks are heavy. Many
tasks will send entry calls to the same entry acceptance of
a called task. When we increase an entry call, the
rendezvous complexity will increase tremendously.
(2) Don't distribute acceptance statements to accept the

M

M

M
* mEi 9 + C(nm mEi) * mEi!),

same entry: It means there are many possibilities when a
task sen& an entry call. When we increase an entry
acceptance statement to receive the same entry, the
rendezvous will also increase tremendously.

When a concurrent program has the above two
properties, it would be advised for redesign to decrease
complexity.

6. Conclusion and Future work

Recently, concurrent/parallel programming testing is
emphasized increasingly. Testing concurrent/parallel
programs is considerably more dBcult because
concurrent programs are often not deterministic. Thus,
many concurrent programming testing strategies are
proposed according to different properties of concurrent
programs.

One major characteristic of concurrent programs
compared with sequential program is rendezvous. We
propose a rendezvous point of view for concurrent
program testing. In our research, we present four testing
criteria based on the rendezvous for concurrent/parallel
programs. According to the analytic properly of entry call
and entry acceptance in the tasks, programmers can
choose an appropriate testing strategy to debug their
concurrent programs. We also propose a coverage criteria
hierarchy for the four criteria and prove the correctness of
the coverage hierarchy. At the same time, we provide four
equations based on the rendezvous to measure software
complexity of a concurrentlparallel program. Furthermore,
we make two suggestions for concurrent programming
based on rendezvous complexity.

In future related work, we will consider the
conjunction of rendezvous with other Ada instructions,
such as select, delay, selective-wait, etc., and propose
more testing criteria to help software engmeers for testing
tasks. We will also extend the investigation to general
parallel programming language with explicit lexically-
specified parallel constructs. We will then apply the
technologies of program decomposition to conduct a
quantitative analysis of the testing criteria and software
metncs for concurrentlpardlel programs. Finally, we will
apply the methodology to other similar programming
environments, e.g., event-driven programming, network
programming and object-oriented Programming.

Reference

1. M. E. Conway, "Design of a Separable Transition
Diagram Compiler," CACM, pp. 396-408

2. Suresh K. Damodaran-Kamal and Joan M. Francioni,
"Nondeterminacy: Testing and Debugging in Message

129

Passing Parallel Programs," ACM SIGPLAN Notices, pp.
118-128, Dec., 1993

3. Suresh K. Damodaran-Kamal and Joan M. Francioni,
"Testing Races in Parallel Programs with an OtOt 1990
Stmtegy," Prcceeding of the 1994 International
Symposium on Software Testing and Analysis(ISSA), also
ACM Software Engineering Notices, special issue, pp.

15. S. Morasca and M. Peeze, "Using Kgh Level Petri
Nets for Testing Concurrent and Real Time Systems, " In
Real-Time Systems: Theory and Application, pp. 119-131,

216-227, Aug., 1994

4. DaD, "Preliminary Ada Reference Manual," SIGPLAN
Notices, Vol. 14, No. 6, Part A, Jun., 1980

5. Narah Gehani, "Ada: Concurrent Programming," 2nd
Edition, AT&T Bell Lab., Silicon Press, 1991

6. C. A. R. Hoare, "Communicating Sequential
Processing," Communication of ACM, Vol. 21, No. 8,
p ~ . 666-677, Aug. 1978

7. T. J. LeBlanc and J. M. Mellor-Crummey, "Debugging
Parallel Programs with Instant Replay," IEEE Trans. on
Computers, C-36, No. 4, pp. 471-482, Apr., 1987

8. Louise E. Moser, "Data Dependency Graphs for Ada
Pr'ograpn~," IEEE Trans. on Software Engineering, Vol.
16, No. 5, pp. 498-509, May, 1990

9. Parallel Computing Forum, "PCF Parallel FORTRAN
extensioa," FORTRAM Forum, vol. 10, No. 3, special
igsut?, Sept. 1991

10. K. G. Tai, R. W. Carver, andE. E. Obaid, "Debugging
Concurrent Ada Programs by Deterministic Execution,"
IEEE Trans. on Software Eng., Vol. 17, No. 1, pp. 45-63,
Jan. 1991

11. R. N. Taylor, "A General Purpose Algorithm for
Analfling Concurrent Programs," CACM, pp. 362-376,
May, 1983

12. R. N. Taylor, D. L. Levine and C. D. Kelly, "Structural
testing of Concurrent Programs," IEEE Trans. on
Software Eng., Vol. 8, No. 3, pp. 206-215, March, 1992

13. J. J. Tsai, K. Y. Fang H. Y . Chen and Y. D. Bi, "A
Noninterference Monitoring and Replay Mechanism for
Real-tinie Software Testing and Debugging," E E E Trans.
on SoftwareEng., Vol. 16, No. 8, pp. 897-915, Aug., 1990

14. S. Weiss "A Formal Ftamework for The Study of
Concurrent Program Testing," In Proceedings of the 2nd
W ~ r ~ h o ~ on Software Testing, Analysis, and Verfication,
gp. 106-113, July, 1988

130

